
White Paper: AON-PRISMA

All-or-Nothing Private Similarity Matching

Florian Kerschbaum, Hongyang Zhang, John Premkumar,
Xinda Li, Faezeh Ebrahimianghazani, Lucas Gamez

University of Waterloo

Koray Karabina, Prini Kotian
NRC

Version 1.0

1 Introduction

The data for socially or economically relevant analyses is often distributed across several entities.
For example, health care data and socioeconomic data are often held by different entities, such as
hospitals, insurance agencies and tax services. Before it can be used to run a joint analysis, it must
be linked across those entities. Even within one entity, there may exist sub-entities, e.g., different
customers, that require a separation of data. Personal data is protected by privacy legislation, such as
PIPEDA, HIPAA, CCPA, or GDPR. It is therefore necessary to deploy state-of-the-art data protection
technologies. Furthermore, it is important to balance the data subject’s perception of privacy and the
quality of services offered.

Record linkage is offered by many trusted third parties, e.g. Statistics Canada1, Ontario Health
Study2, or Population Data BC3. However, these entities carry a substantial risk handling this data
and are required to deploy strong state-of-the-art data protection technologies.

The ideal protection would be to encrypt the data before sending it to the matching entity. Yet,
that’s non-trivial, since standard encryption destroys any similarity between data. Data entries often
subtly differ due to data entry errors or missing data fields. Hence, it is important to be able to match
not only identical but also similar data entries. Functional encryption allows a similarity function to
be evaluated over encrypted data but is too slow for practical use. Partial encryption of data elements
leaks partial matching results that have regularly been shown to break the encryption. In this white
paper we describe our open-source software AON-PRISMA based on a novel cryptographic algorithm
for similarity matching that is both secure and efficient. AON-PRISMA has three key properties:

• Secure: AON-PRISMA supports all-or-nothing disclosure. This means if two data entries differ
more than a tunable similarity threshold, no information is revealed about them, including their
distance. This also means that it is not possible to construct a new encrypted data entry from
two or more encrypted data entries that can be used to match against other records.

• Efficient: AON-PRISMA only uses secret-sharing and symmetric encryption and no public-key
encryption. It is hence much faster than functional or homomorphic encryption scheme. We also
have optimized the field operations in our implementation.

• Accurate: AON-PRISMA uses preprocessing of data entries using machine learning. By fine-
tuning existing models, e.g., large language models, we can leverage the power of representation
learning. We use contrastive learning that keeps distance information to encode data entries
before matching them encrypted.

1https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch3/5214780-eng.htm
2https://www.ontariohealthstudy.ca/for-researchers/data-linkage-opportunities/
3https://www.popdata.bc.ca/datalinkage

1

2 Challenges

2.1 Security: All-or-nothing disclosure

Standard encryption, such AES or RSA, can be ruled out for similarity matching since it destroys
any similarity between data entries. This property is necessary since partial encryption leaks sensitive
information. Consider the following trivial encryption scheme: For a bitstring, encrypt zeros as “A”
and ones as “B”. Two similar strings 010111 and 010110 would become ABABBB and ABABBA. This
preserves similarity and one can perform similarity matching on the encrypted data, but it is easy to
see that this encryption scheme offers little security.

For AON-PRISMA, we have developed a new encryption algorithm. This new encryption scheme
allows comparing encrypted data entries, but also offers all-or-nothing disclosure. This means that if
two data entries are not similar, no information about those data entries can be inferred. Encrypted
records remain encrypted, even when matched.

Furthermore, AON-PRISMA’s encrypts the entire data entry. Consider two bitstrings 000111 and
111000 matched against 000000. None of the two bitstrings by itself is similar to the matched string,
but taking the first three bits of the first string and the last three bits of the second string produces
a perfect match. Hence, a malicious entity with those two strings could produce a match despite not
having a matching data entry. AON-PRISMA’s encryption algorithm comes with a security proof that
rules out these attacks.

2.2 Efficiency: Error-correcting codes and symmetric encryption

AON-PRISMA’s encryption algorithm encodes each data entry using an error-correcting code, such
that the combination of two encrypted data entries can be decoded if they are similar. The decoding
uses efficient, polynomial-time algorithms, such as Berlekamp-Welch and list decoding. Symmetric
encryption ensures that only similar records can be decoded.

Both – error-correcting codes and symmetric encryption – are fast operations, much faster than
functional or homomorphic encryption. We compare the running time of AON-PRISMA’s encryption
algorithm to efficient, “practical” function-hiding inner-product encryption. AON-PRISMA is orders
of magnitude faster.

We have optimized AON-PRISMA’s encryption algorithm to operate over smaller field sizes that
fit into CPU registers and take advantage of improved lookup tables, without sacrificing security.
Such algorithmic optimizations provide unmatched speed up compared to näıve implementations. For
comparing data sets, the time to match two records is critical, since the total running time scales
linearly in the time for a single matching, i.e., matching two records 2 times faster reduces the total
running time by a factor of 2. AON-PRISMA also supports private blocking, e.g., locality-sensitive
hash functions, which reduces the number of necessary comparisons from all pairs to a much smaller
subset.

2.3 Accuracy: Machine learning-based encoding

AON-PRISMA uses an extended version of the Hamming distance to match records. Each data entry
encoding is not composed of bits, but integers which are then compared element-wise and their number
of matches comprises the similarity. For similarity matching the threshold to determine a match can
be set at encryption time and is tunable for different data domains.

A data entry input is encoded using a Transformer neural network into a fixed-length vector.
The goal is to map the input to a feature space, such that the mapping preserve similarity between
data entries. AON-PRISMA uses contrastive learning to achieve this encoding. This type of training
makes AON-PRISMA very flexible. Depending on the training data set, AON-PRISMA’s encoding
can capture syntactic, e.g., spelling errors, missing field, etc., and semantic, e.g., different vocabulary,
domains, etc., differences. AON-PRISMA can also leverage existing model snapshots using fine-tuning.
This allows to leverage large language models for natural language matching using state-of-the-art
performance.

2

3 Encryption Algorithm

In this section we describe our encryption algorithm. Next to the use of efficient primitives, such as
symmetric encryption and error-correcting codes, we optimized our implementation to operate over
small field sizes to significantly reduce the constants factors in running time. Before we describe
our algorithms, we present a formal definition of our algorithms and their security and correctness
properties.

3.1 Definitions

Let λ be the security parameter that bounds a computational adversary. A secure approximate equality
operator consists of three, possibly probabilistic polynomial-time algorithms.

1. K ← KeyGen(1λ): generates a (symmetric) key K using the security parameter λ.

2. c⃗← Encode(K, x⃗, t): generates a transformed ciphertext c for vector x⃗ and threshold t.

3. ⊤/⊥ ← Compare(c⃗1, c⃗2): outputs “equal” (⊤) or “not equal” (⊥) given two transformed vectors
c⃗1 and c⃗2.

We say a secure approximate equality operator is correct, if

∀λ, x⃗, y⃗, t,
K ← KeyGen(1λ),

c⃗1 ← Encode(K, x⃗, t),

c⃗2 ← Encode(K, y⃗, t),

d(x⃗, y⃗) ≥ t =⇒ Compare(c⃗1, c⃗2) = ⊤,
P r[d(x⃗, y⃗) < t ∧ Compare(c⃗1, c⃗2) = ⊤] = negl(λ).

Let L(x⃗, y⃗) be the information about x⃗ and y⃗ leaked by executing a secure approximate equality

operator. We denote computational indistinguishability of two ensembles E1 and E2 as E1
c≡ E2. We

say an approximate equality operator is L-secure, if there exists a simulator Sim(L(x⃗, y⃗)) such that

∀x⃗, y⃗, t,
K ← KeyGen(1λ),

c⃗1 ← Encode(K, x⃗, t),

c⃗2 ← Encode(K, y⃗, t),

Sim(L(x⃗, y⃗)) c≡ Compare(c⃗1, c⃗2).

Let xi be the i-th entry of vector x⃗. Let HKi
(·) be a keyed, one-way transformation function, e.g., a

message authentication code. Let n be the length of vectors x⃗ and y⃗. We say an approximate equality
operator is relaxed secure, if it is L⋆-secure for

L⋆(x⃗, y⃗) =

{
⊤, HKi

(xi)−HKi
(yi), ∀i|xi ̸= yi, if d(x⃗, y⃗) > t;

⊥, otherwise.

3.2 Base Algorithm (Over Large Fields)

Let I(x, y) be the equality function, i.e., I(x, y) = 1 if x = y and 0 otherwise. Our secure approximate
equality operator implements the following similarity function d.

d(x⃗, y⃗) =

n∑
i=1

I(xi, yi).

We implement our secure approximate equality operator as follows

• KeyGen(1λ): Execute K ← KeygenMAC(1
λ) and output K.

3

• Encode(K, x⃗, t): Letm andm′ be messages. Create n codewords from a linear code, e.g., Shamir’s
secret shares for Reed-Solomon codes, σi = SS2t−n,m(i) and σ′

i = SS2t−n,m′(i) for 1 ≤ i ≤ n.
Output the vectors σx,i = σi +MACMACK(i)(xi) and σ′

x,i = σ′
i −MACMACK(i)(xi).

• Compare(σ⃗x⃗, σ⃗
′
y⃗): Compute ρi = σx,i + σ′

y,i. Reconstruct m +m′ from ρi. If the reconstruction
is successful, output ⊤ and optionally m+m′, else ⊥.

3.3 Small Field Implementation

In small fields we can no longer rely on adversary’s inability to guess the MAC of an input element
xi. We therefore need to introduce some redundancy and confusion into the algorithm. Let α, β be
(repetition) parameters. Let πK be a random permutation of [1, βn] uniformly chosen based on K.
We can implement our secure approximate equality operator over small fields as follows

• KeyGen(1λ): Execute K ← KeygenMAC(1
λ) and output K.

• Encode(K, x⃗, t): We repeat the following procedure for 1 ≤ j ≤ α. Let mj and m′
j be messages.

Create βn codewords from a linear code, e.g., Shamir’s secret shares for Reed-Solomon codes,
σj,i = SS2βt−βn,mj (i) and σ′

j,i = SS2βt−βn,m′
j
(i) for 1 ≤ i ≤ βn. Output vector σx⃗,j,i =

σj,i +MACMACK(j,i)(x⌈πK(i)/β⌉) and σ′
x⃗,j,i = σ′

i −MACMACK(j,i)(x⌈πK(i)/β⌉).

• Compare(σ⃗x⃗,1, σ⃗′
y⃗,1, . . . , σ⃗x⃗,α, σ⃗′

y⃗,α): For 1 ≤ j ≤ α,

– Compute ρj,i = σx⃗,j,i + σ′
y⃗,j,i. Reconstruct mj +m′

j from {ρj,i}βni=1. If the reconstruction is
not successful, output ⊥ and halt.

• Output ⊤ and optionally m1 +m′
1, . . . ,mα +m′

α.

3.4 Worst Case Guessing Attack

In small fields we can no longer rely on adversary’s inability to guess the MAC of an input element.
We therefore need to consider the adversary’s capability to guess such a MAC in the worst case.

Let p be the probability of the event E that x⃗ and y⃗ differ in one element above the interpolation
threshold. We start by assuming β = 1 and the π is the identity function. Then, if E and the attacker
knows m and m′, the attacker can try all N values of all σx⃗,1,i and σy⃗,1,i. The attacker can target a
specific index i or try all possible i. If xi and yi are the same (but the vector differs at some other
index), the attacker obtains a freshly drawn random number. If xi and yi differ, the attacker obtains
MACMACK(1,i)(xi)−MACMACK(1,i)(yi) which is statistically different from a freshly drawn random
number, since it is the same for each event E. Given sufficiently many attempts, the attacker can
recover a distinctive histogram over multiple events E.

If β > 1 and π is a random permutation, then the attacker needs to guess β indices which range
over

(
βn
β

)
value tuples. He can iterate over β−1 indices fixing them to every possible value tuple, since

there is always an β-th value that will recover mj + m′
j , and compute the value for the β-th index

using Lagrange interpolation.

3.5 Computationally Efficient Guessing Attack Using Berlekamp-Welch

The worst-case guessing attacks works, even if the number of matching values in the vectors is below
the secret sharing threshold. However, the attack is more efficient if there are more matching values
and one can use efficient reconstruction attacks to speed up the attack.

Let p be the probability of the event E that x⃗ and y⃗ differ in one element above the correction
threshold of the Berlekamp-Welch algorithm (considering that elements may be repeated β times). If
E, the attacker can try all Nβ values of β chosen elements σx⃗,i and σy⃗,i, and run the Berlekamp-Welch
algorithm to see if it reconstructs. If the chosen index i is indeed an index where x⃗ and y⃗ differ, the
attacker obtains MACMACK(j,i)(x⌈πK(i)/β⌉)−MACMACK(j,i)(y⌈πK(i)/β⌉).

4

Figure 1: p(E1) v.s. s curve.

4 Locality Sensitive Hashing

We can implement a locality-sensitive hashing (LSH) algorithm to reduce the number of equality
operations computed by the server. Let r be the number of indices selected and k be the repetition
parameter of the LSH algorithm. Let b be the number of bins. Each client performs the following:

• Uniformly samples r values from the encoding vector x and get (x1, ..., xr).

• Compute hi = HK(x1||...||xr) mod b.

• Repeat the above steps for k times and get a vector of hashes Hx = [h1, ..., hk]. The client sends
the vector to the server along with the record.

On the server side, for two records x and y that require comparison, if ∃i,Hx[i] = Hy[i], the server
returns the output of our secure approximate matching algorithm. Otherwise, it returns false.

4.1 Analysis

Let t be the decision threshold and s be the number of non-matching indices (extended hamming
distance) of two vectors x and y.

Define E0 be the event that the selected index subset contains at least one of the non-matching

indices. Then p(E0) = 1− (n−s
r)
(nr)

. We assume if E0, then hix ̸= hiy (may need to consider hash collision

later). Define E1 be the event that at least one of k hashes of x and y are the same at the same index.
That is, ∃i,Hx[i] = Hy[i]. Then, p(E1) = 1− p(E0)

k.
In our algorithm, the server performs matching if E1 happens. Thus, our goal is to achieve the

following by tuning r and k: when s ≤ t, p(E1) is large (minimize false negatives), and when s > t,
p(E1) is small (minimize the wasting of computation time). This can be done by defining a score
function and using a grid search. A possible criterion could be the area under curve (AUC) when s ≤ t
and s > t.

Figure 1 is a sample plot of the p(E1) v.s. s curve. Here, we take n = 256, t = 92, k = 50, r = 10.

4.2 Security

We implement differentially private padding to prevent leaking whether a specific element was part of
a party’s input set. The privacy parameter ϵ is tunable and the number of padding elements per bin
is expected to be linear in ϵ. Loosely speaking, the server will not be able to determine whether an
element is part of any party’s input set except with probability bounded by ϵ. We use the Laplace
mechanism to satisfy differentially private padding. The Laplace Protocol works by inserting (only
inserting and not removing) a carefully chosen number of dummy records into each bin of the blocking
strategy such that the bin sizes are differentially private. While candidate matches may contain dummy

5

records, they do not contribute to the output set of matches, because the dummy records do not match
any record. These candidate matches are then securely matched using the rest of our algorithm.

5 Machine Learning-based Encoding

AON-PRISMA uses an extended version of the Hamming distance to match records in the feature
space. To map the input space to the feature space such that similar data (under some distance
metrics) in the input space are close in terms of extended Hamming distance in the feature space,
one needs to learn an encoder. In this section, we introduce a machine learning technique, contrastive
learning, to achieve this goal.

To fine-tune the model on the public dataset, we use the loss that encourages the distance of
matched data pair to be small while enlarging the distance of unmatched data pair in the encoding
space. This is achieved by minimizing the contrastive loss w.r.t. θ for each batch:

Lcontrastive(si, sj , θ) = 1[yi = yj] · ∥θ(si)− θ(sj)∥22 + 1[yi ̸= yj] · [max(0, ϵ− ∥θ(si)− θ(sj)∥2)]2,

where θ is the encoder to be fine-tuned, ((si, yi), (sj , yj)) is the data pair, ϵ is the margin hyper-
parameter, and 1[·] is the indicator function which is equal to 1 if the condition in the bracket holds,
and is equal to 0 otherwise. After fune-tuning, we apply AON-PRISMA to the output vectors of the
encoder. The encoder we use depends on specific applications. For text data where semantic similarity
should be captured, we use pre-trained RoBERTa as our backbone model.

6 Applications

6.1 Record Linkage

In this section, we consider the record linkage application where the goal is to identify which records
belong to the same identity. We tested AON-PRISMA on three record linkage datasets. Each dataset
contains two sub-tables and a ground-truth table for true links. For each dataset, we split both sub-
tables by 60%, 20%, and 20% for training, validation, and testing purposes. To measure the imbalance
level of a dataset, we define ratio r to be # of non-match pairs / # of match pairs in the dataset.

• Amazon-google dataset: The Amazon-google dataset has 1,363 and 3,226 records each. The total
number of data pairs in the validation dataset is 272×645 = 175, 440. The ratio of the validation
dataset is roughly 3,579.

• Febrl4: The Freely Extensible Biomedical Record Linkage dataset is generated with 5,000 original
records and 5,000 duplicates, with one duplicate per original. The total number of data pairs in
the validation dataset is 1,000k. The ratio of the validation dataset is roughly 5,000.

• Abt-buy: The Abt-buy dataset contains 1,081 entities from abt.com and 1,092 entities from
buy.com. The total number of data pairs in the validation dataset is around 47k. The ratio of
the validation dataset is roughly 960.

6.1.1 Accuracy

For the Amazon-google dataset and n = 256, the distribution of the extended hamming distance of
each data pair (after encoding) is shown in Figure 2:

The results of the experiment for all datasets are shown below in a table (n = 256).

Dataset Model r (model training) Th value Test acc Test f-score
Amazon-google Roberta 1,000 118 99.98 73.85

Febrl4 Roberta 1,000 122 99.99 97.16
Abt-buy Roberta 1,000 106 99.98 88.46

6

Figure 2: The distribution of the extended hamming distance of each data pair (after encoding) for
Amazon-google dataset.

6.1.2 Running Time

The computational time and overall utility of end-to-end evaluation are shown below in a table. Current
runs are performed on the Intel Xeon Platinum 8368 cpu (152 cores). The LSH column shows the
parameters for the locality-sensitive hashing if used.

Dataset n N ℓ Poly degree LSH (k, r) F-score Total time # of matchings

Amazon-google
256 216 2 46 (10, 3) 70.37 29m9s 110k
256 216 2 46 - 73.85 39m46s 175k

Febrl4
256 216 2 20 (10, 4) 96.25 2h28m 529k
256 216 2 20 - 97.16 3h58m 1,000k

Abt-buy
256 216 2 24 (10, 2) 90.19 9m46s 30k
256 216 2 24 - 90.19 12m45s 47k

Amazon-google
256 232 1 - - - 24m39s -
256 232 1 - - - 32m57s -

Febrl4
256 232 1 - - - 1h46m -
256 232 1 - - 2h39m -

Abt-buy
256 232 1 - - - 7m51s -
256 232 1 - - - 9m19s -

Amazon-google 256 plaintext 1 - - - 2m42s -
Febrl4 256 plaintext 1 - - - 18m29s -
Abt-buy 256 plaintext 1 - - - 1m25s -

6.2 Biometric Template Protection (Keystroke dynamics data)

In this section, we present how we apply AON-PRISMA to match a type of biometric data, keystroke
dynamics data, accurately and privately. Keystroke dynamics is the analysis of typing rhythms to
discriminate among users. It can be used for biometric verification and authentication purposes. In
the real world, password-based authentication is the most common and effective method to prevent
unauthorized access. However, user-created passwords may be easily compromised by adversaries if
they do not follow certain password-creating rules. Moreover, adversaries may exploit compromised
passwords to break into accounts that have similar passwords. Keystroke dynamics was proposed as
a biometric identifier to differentiate users in order to mitigate these security threats. With keystroke
dynamics, imposter attempts to authenticate using the true password could be detected and rejected
if the typing behaviour deviates significantly from that of the genuine user. Since the user’s keystroke
dynamics data is private and sensitive, we apply AON-PRISMA to ensure the matching is performed
on ciphertexts, and no private information is revealed.

In a typical authentication round, the server decides whether to accept the login attempt of a
user based on the submitted typing behaviour data and the user-specific template data stored on the
server. For each user’s data, a similarity score is computed on the server by comparing the data with
the corresponding user’s template. Then the server determines whether the user is genuine based on

7

a decision threshold.

6.3 Server methods

We assume the server stores a few template records which could be used to authenticate a given record
for each client. The following proposed methods are based on the Extended Hamming distance, so
they could be applied to compute the score on the server for a given record.

• Mean: The user template is stored as the mean of a set of genuine user data. In the test phase,
the score is calculated as the extended hamming distance between the test vector and the mean
vector.

• Filtered mean: In the training phase, the mean and std of the training vector are calculated.
Any training vector element that is not within mean ± 3 × std is removed, and a more robust
mean vector is computed without these outliers. The testing phase is the same as Mean.

• Median: Similar to Mean, but the element-wise median is calculated.

• Filtered median: Similar to Filtered mean, but the element-wise median is calculated.

• Nearest-neighbour: In the training phase, the server saves the list of training vectors. In the
testing phase, the score is calculated as the extended hamming distance from the test vector to
the nearest training vector.

6.4 Client encoders

We could either use the identity encoder or train a custom encoder for each client. For the identity
encoder, the client does not encode the record at all, but quantization and encryption still apply. For
the custom encoder, we train a machine learning-based encoder that encodes clients’ records to fixed-
length encodings. We use contrastive learning to train an encoder for each user. We construct positive
pairs by taking two genuine records from the user and negative pairs by taking a genuine user’s record
and an imposter’s record.

6.5 Results

We perform experiments on the CMU Keystroke Dynamics Benchmark Dataset. We split each user’s
keystroke data into non-overlapping training, validation and testing sets. The validation and testing
dataset each contains 100 genuine and 500 impostor data records.

The experiment results are displayed in Table 1. Table 2 contains the baseline results. To produce
baseline results for comparison, we do not quantize the record vector and use l1 distance to measure
distances. The identity encoder is used in this case. The F-score is calculated as the averaged F-score
across every user.

Table 1: Results for keystroke data

Encoder type/Server method Mean Filtered Mean Median Filtered Median Nearest-neighbour
Identity encoder 61.53 66.37 69.72 70.15 80.19
Custom encoder 79.79 79.67 79.97 80.33 82.75

Table 2: Baseline results for keystroke data

Approach F-score
Mean 68.74

Mean + filtered 73.47
Median 75.60

Median + filtered 75.79
Nearest-neighbour 78.72

8

	Introduction
	Challenges
	Security: All-or-nothing disclosure
	Efficiency: Error-correcting codes and symmetric encryption
	Accuracy: Machine learning-based encoding

	Encryption Algorithm
	Definitions
	Base Algorithm (Over Large Fields)
	Small Field Implementation
	Worst Case Guessing Attack
	Computationally Efficient Guessing Attack Using Berlekamp-Welch

	Locality Sensitive Hashing
	Analysis
	Security

	Machine Learning-based Encoding
	Applications
	Record Linkage
	Accuracy
	Running Time

	Biometric Template Protection (Keystroke dynamics data)
	Server methods
	Client encoders
	Results

